


2.1 Wave Shape. The initial deseription of any wave is by specifying its shape. The most

common waveform considered is a sine wave, which is a graph of the sine of the angle
of rotation of a vector as the angle varies with time. Other types of waveforms often
encountered are -

pU—
(i) "Rectangular Waves" — Waves that B

alternate between twe fixed values
with negligible transition +ime
compared with the duration of &
cycle of the wave (Fig. 1a).

(i1) "Square Waves" - Special cases of (a) Rectangular Wave.
rectangular waves where equal
lengths of time are spent at each —

of the two fixed values (Fig. 1b).

(iii) "Sawtooth Waves" - Waves with a
linear rate of change from one
value to another, followed by a
return or '"retrace" to the
initial value with negligible (b) Square Wave.
transition time compared with
the duration of a cycle (Fig. 1cj.

A "pulse" is a sudden change of voltage or
current of short duration compared with
the time scale of interest, with the
voltage or current having the same value
both before and after the pulse. Pulses

are also described according to their (2) Sawtooth Wave.
shape, so we have rectangular pulses, and
sawtooth pulses (Fig. 2). FIG. 1. WAVEFORNS.

2.2 Polarity. The pulses may be either the sections of the waveform extending positive or

AMPLITUDE

AMPLITUDE

A

extending negative from the normal steady value between pulses and these sections are
described as positive and negative pulses respectively. This still applies if the
pulse waveform is superimposed cn & D.C. signal as in Fig. 2d. Positive pulses are
shown in Figs. 2a and b, and negative pulses in Figs. 2¢ and 4.

A positive "pulse train' or sequence of pulses, is changad fto a negative pulse train
by a phase reversal. This can be produced by a transformer or by a valve amplifier

without changing the shape of the waveform except to invert it. The pulse waveform

in Fig. 2a is changed to the waveform in Fig. 2c by a phase reversal.
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(a) Positive Rectangular Pulses. (b) Sawtooth Pulses.
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(c) Negative Rectangular Pulses. (d) Negative Pulges on Positive D.C. Signal.

FIG. 2. PULSES.




2.3 Transition Time.
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Practical waveforms do not have "transitions" (changes) that sre

S 3

instantaneous because of the limiting of the high frequency response.
discusses how the time for the transition depends on the amplitude of the high

Section 3

frequency components that make up the wave.

shaped as shown in Fig. 3, where the pulse has sloping sides.

sometimes described as being "trapezoidal®.

A practical rectangular wave is often
This wave shape is

The time for the transition of a rectangular wave (which includes a rectangular pulse

waveform), is an important characteristic.
either the "rise time" or the "decay

(1)

The transition time is specified Ly

"Rigse Time" is the time taken for a waveform to vary between 10% and 90% of +he
final peak to peak amplitude of the transition, unless some other levels are
stated. This is designated tp in Fig. 3. The 10% and 90% points are
specified as these times are more easily determined than the +times where the
wave departs from O and just reaches 100%.
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TRANSITIONS OF A

TGN AR WATF
(ECTANGULAR WAVE,

(i1) "Decay Mime" is the time taken 7
the peak %o peak amplitude unl
time is often egual to the rise

m "decey

T ay time"
ding edge

In many cases the t
rise time of the le

edge of the pulse,

2
a

With sawtooth waves, where the linecr
its limits are normally well defined,

3 1
time, but this is not unecessarily so.

orm to vary between 90% and 10% of
wise stated, (td in Fig. 3). The decay

is not used, and instead we speak of the

of the pulse and the rise time of the trailing

transition is the major section of the wave and
the transition times specifi

ed are the time

for the forward trace and the time for retrace, as designated in Fig. 4.
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FIG. 4. DESIGNATIONS COF A SAFTOOTE WAVE.




TC PULSE TECHNIGUES

2.4 is the ti zasured at specified points on the transition.
e are ¢ rectangular pulses, pulse duration is
nor sured as the en toe end of the rise time arnd the start of the
decs i the tim the pulse meagurad at apyroximately the maximum amplitude
( 5 In gome however, the duration is spsecifised from the start of the
r he end of time with the transition times considered as part of
the ion.
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PIG. 5. PULSE CHARACTERISTICS.

Another point used for measurement of duration is at half the pulse peak~fo-peak amplitude
(ty in Fig. 5). This tis is the pulse "half amplitude duration" (h.a.d.). Specification
of the pulse h.a.d. is ig more useful for
measuring the duration ¢ 156~ where ﬁhe transition time of the pulse 1s almost the
as the pulse duration. in exam ple of
duration of the "sine sguared pulse"

ULse

same
this designation in practice is for speulleng the
considered in the paper "Video Test Signals™.

z.5 "Pulge Spacing" (sometimes known
is the time between corresypondir

1 1"

B
}iz

Fulse Pericd® or "Pulse Repetition Mime" (P.E.T.
2 points on two consecutive pulses (4o in Fig. 5).

The same value is obtained independent of which point is taken.
Related to the pulse spacing iz the "Pulss Repetition

Frequency” (P.R.F.), which ig the
number of times the pulse re—ocours per second, i.e.

Puise Spacing %E '

2.6 Combining the pulse spacing and the pulse duration we have

the "Pulse Duty Factor'.
The "Pulse Duty Factor” is the ratio of the pulse duratinn

to the pulse spacing, i.e.

iiS atl 11
Pulse Duty Factor = Pulse Duration 1
Pulse Spacing 7

Notice that this is also equal to the pulse duration times the pulse repetition frequency.

Pulse futy Facter = Pulse Duratisn X P.R.F., since
S — - PR

to define the ratio of pulse duration to the time
start of the next. Therefore, in Fig. 3,

fark-to-Space Ratio = 1=

The preceding definitions
are alse used to describe other waveforms.

have been applied to rectangular pulses, but where applicable
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3. FREQUENCY SPECTRUM.

ves, Com*lex Waveﬁ can be ¢ idered as bel: forme ‘2 21?60 dlc gun of
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TECENIQUES.

3.2 Bhort Duration Pulses.

It is convenient
magnitude of the

0 show the frequencies contained by a complex waveform by plotting the
components on & frequency scale as shown in Fig. 7 for the square wave.

FUNDAMENTAL

2nd. HARMONIC
(zERO aMPLITUDE)

RELATIVE AMPLITUDE

FREQUENCY g
FREQUENCY SPRCTHUM OF A SQUARE WAVE.

FIG. 7.

The fundamental and the 5th harmonic are drawn with a positive sign and the 3rd and 7th
harmonics with a negative eign to indicate their phase relationship at a convenient
reference time. The phase relationship is confirmed by examining Fig. 6, which shows
that, at the time the fundamental is at a positive maximum the 5th harmonic is also at a
positive maximum, and the 3rd harmonic is at a negative maximum. This means that at the
reference time alternate harmonics are of opposite phase. The resultant voltage at this
instant is equal to the algebraic sum of the peak amplitudes of the components, that is
Fundamental minus 3rd harmonic plus 5th harmonic.

For television and many other applications, a major interest is

in rectangular pulses with a small pulse duty factor. Consider a pulse train in which
the pulse repetition frequency is 1000c/s and the pulse duty factor is 1/4. In this
case, the pulse duration is 250pS (Fig. 8a).

The frequencies required to produce such a pulse are tabulated in Table ! and shown
graphically in Fig. 8h.

Frequenc Amplitude relative
Pquency to Amplitude of Fundamental
Fundamental (1000c/s) 1
2nd Harmenic {2000c/s) 707
3rd Harmonic (3000c/s) .333
4th Harmonic (4000c/s) ¥o Amplitude
5th Harmonic (5000c/s) .2
§th Harmonic {6000c/s) 236
Tth Harmenic (7000¢/s) J143
8th Harmonic (8000c/s) Mo Amplitude
ete.
TABLE 1. FREQUENCY COMPONENTS OF A PULSE.
2 T FUNDAMENTAL
=
£ 7074-- . _2nd HARMONIC
] 2505 22
= EE333-— -1
! 2 RIS G
A 2 oLl 4] _L L8 90 012
{ i B N B
e
| &
i | e

‘——~—4———Dﬁ
T IME ——ere S50

(a)

FREQUENCY { Kc/s) it

(b)

FIg. 8, FREQUENCY SPECTEUM OF A PULSE.
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By joining the amplitudes of all the components shown for the pulse on the frequency

scale (Fig. 8b), the values are seen to follow the shape of a "damped sine wave" with

zero amplitudes for the components at regular intervals of frequency. The first zero
1

. 4 . .

ig at the harmonic corrispondlng to oulse duty factor’

Further zeros cccur at mulfiples of this first

which is at a frequency

corresponding to EEIEE—EGEEEEI;;.
frequency.

In the case with a duty factor of 1/4, the 4th harmonic and the 8th, 12th and 16th, etc.,
have no amplitu' Therefore, with a pulse duration of 250uS, the first zero is at a

frequency of 2ROc/s, or 400001

Az well as the sine wave components there may be a D.C. component required tc construct
the pulse train. This can also be included in the drawing of the pulse frequency spectrum
ty showing a component at zero frequency. The D.C. ccmponent magnitude depends on the
position of the mero axis of the pulse train and is considered in Section 4.

The fundamental and the harmonics up %o the fifth are plotted in Fig. %a. Note that the
fifth harmonic reaches 2 negative maximum at the same time as the fundamental is a
positive maximum as indicated by the phase reversal of this component in the frequency
spectrum in Fig. &b,

The resultant waveform in Fig. 9b is produced by adding all Lomponents up to the 8th
harmonic. The higher order components are not “noluded in Fig. %a, as they would confuse
the diagrsm. The resultant shows a resemblance to the desired pulse even with this

small number of components.
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pulse duration
independent of the pulse repetition frequency and is only dependent on the pulse duration.
The components are spaced SOOc/s apart in the lower P.R.F. case compared with 1000c/s in
the higher P.R.F. case, and ths amplitude of the low frequency components in the SOOc/s
case ig half the amplitude of the corresponding components in the 1000c/s example.
The shapes of all the spectrums for rectsngular pulses in Fig, 10 are the sams, only the
scale hag varied.
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Fi¢. 10. FREQUENCY SPECTRUMS FOR SHORT DURATION PULSES.
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Summarising, Fig. 10 shows that the components of the rectangular signal are spacsd 2%
frequency intervals equal to the repetition frequency of the pulses, and that the

amplitude falls to zero at a frequency equal to - and multiples of that

pulse duration
frequency, independent of the pulse repeiiticn frequency.

3.4 Transient Pulses. Consider that the repetition rate is decreased to the extreme. Only

one pulse is produced and no other disturbances occur from an infinite tims before (=)

to an infinite time after (+ o) ag shown in Fig. 11a. The shape of the spectrum is the

1

pulse duration’
but as the repetition frequency is actually zero, there is no space between the
components. That is, all frequency components enclosed by the "damped sine wave" shape
are present (Fig. 11b). As can be expected, the amplitude of each compenent is reduced
because there are so many components combining to produce the final amplitude.

same as before with the components falling to zero at a frequency equal to

016 X 10764
Fo)
g
I -
I ]
A =
| <t
N A a—
- ] e 108 Riad ! 2 3 4 5 ]
TIME — FREQUENCY (Mc/s) —— 3o
(a) (p)

FIG. 11. FREQUENCY SPECTRUY OF A TRANSIENT PULSE.

3.5 Infinitely Short Pulses. In a theoretical case of decreasing the length of the pulse sc
That its duration is infinitely small (Fig. 12a), the first zero in the frequency
spectrum of the pulse is increassd %Yo infinity. In other w here ig no zero, and
the amplitude of the components is constant at all frequenci shown in Fig. 12b.

pee X3
H
oaen
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This condition is approached in a practical case when the band frequencies of interest
has a high frequency 1limit that is much lower in frequency than the first zero of the
pulse spectrum. When this occurs, component frequency amplitude are almost consbant
throughout the bandwidth of interest.

i
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INFINITELY SMALL w
/'DURATIQN PULSE S l HE ‘; 1“‘ HU
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3
TIME e FREQUENCY e
(a) ()

FIG. 12. FREQUENCY SPECTRUM OF 4 PULSE OF ZERC DURATION.

3.6 Rige Time. In practice we are more interested in pulses with a finite rise time. It is
necessary 1o know ‘the bandwidth that is required to transmit e pulse with a specified
rise time without degradation, and what is the fastest rise time that is possible when a

pulse is passed through a system with a limited bandwidth.

Inspection of the frequency si ular pulses consgidered
shows that the majority of the y the spectrum is at
lower fregquenciss than the first zero. I ¢ Ll é 1cd are transmitted the
pulse can still be identifi E sing present ts ri tima L oo 7 DOOT.

Ts produce ; het 1 LW e duration,
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Cornsicer a simple "trapezoidal" waveform zs in Fig. 13a. The amplitudss of the frecuency
compenents for this pulse trzir are dependent on both the half amplitude duration and
the rise time of the pulse. There is a zero in the freguency specirum at a freguency
1 . - 1
aqual to ————————— and also at a frequency ecual to . Normally, the
7 i ) 3 J s

pulse h.a.d. pulse rise time
rise time is much shorter than the pulse duration and so the first zero in the spectrum
czused by the pulse duration is at a much lower frequency than the first zero caused by
the pulse rise time.

To produce a pulse with a finite rise time, frequency components up to half the frequency
of the first zero in the spectrum caused by the rise time must be included.

. 1 frequency = ¢fs.
.. Highest frequency of a rectangular pulse = s—c-rr———7r=- where .
E g y tang P 2 X rise tiae rise time = secs

Lny system capable of transmitting a pulse with negligible change of rise time must pass
frequencies 1o ——~———l~—ff-.
2 X rise time

The spectrum zero that is caused by the rise time is independent of any changes in the
spectrun caused by the pulse duration, so that when the pulse duration is greater than
the rise time, the frequency band required to pass the pulse with negligible degradation,
depends only on the rise time. The same bandwidth is required for a short duration pulse
as for a single step between two levels, if the rise time is the same in each case.

Although the pulse consists of many frequencies, in a simple consideration the highest
frequency can be thought of as causing the shape of the pulse transition. In Fig. 13b,
the total transition time is a half cycle of a sine wave at approximately the highest
frequency passed by the system.

et 1. 0.4~

Lad

S

2504

= i

z |

- |8 ———————— ;

| e RISE TIME - = TRANSITION (1)
(a) (v)

FIG. 13. PULSE OF FINITE RISE TIME.

If the time for this half cycle is t secs., the time for a full cycle is 2t secs., and

1
the highest frequency that is responsible for the transition is 5{0/3. Considering the
rise time as approximately t secs., the highest frequency required fromw the formula is
1 . N . - . . . .
§:c/s. Thig coincides with the Trequency representing the transition in the simple
example. There are components present at higher frequencies, but for practical pulses
of finite rise time, they are small in avplitude.
s an example, the highest frequency component of any importance that is present in a
ulse with a 0.1uS rise time is ~

LS

el

1 1

Ut 1 . : ! - ~ S S TS

Highest freauency of pulse 3TYTIIITITTT T sTyTRTT Me/e = Shic/s.

i ’ H 2 ¥ rise time 2 X 0.1 !

Relatine this to the amplitude-frequency response of a circuit, if an ideal rectangular

i % 3

pulse passed through a circuit and the output pulse rise time is 0.1pS, the bandwidth
N . - s/ N - . . . =

of the circuit is approximately 5%c/s, and conversely, if the circuit bandwidth is jﬂc/s

. 1
the outrut pulse rise time is 0.1u8 {(Rise Time = - . These statements
€ outpul t HS AL 2 % Highest Frequency>

are only approximate as the actual shape of the output waveform depends on the shape of
the amplitude-frequency and phase~frequency responses, particularly near cut—off.
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Sawtooth Waveforms.

2
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A sawtooth wave contains sine wave components including all
harmonics of the fundamental repetition frequency, with phase relaticnships as
indicated in Fig. 14a.

Examining the phase relationship at time A, the fundamental
and odd harmonics are pesitive going and the even harmonics are negative going.

At time B, all components are negative going and the combination of the components

at this time is responsible for the rapid retrace of the sawtooth. The amplitudes

of the harmonics are the inverse of their order, i.e. the ?nd harmonic is half the
1 ¢4

amplitude of the fundamental and the 100th harmonic is 1% of the fundamental.

sawtooth.
13th harrmonics only.

i

As more components are included in the resultant, the waveform produced apuvrcaches
cloger to an ideal Examples in Fig. 141 include components to the 5th and

Consequently, the linear forward trace of the sawtooth contains
ging, particularly at the ends, and the retrace time is not zero.
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FiG, 14, COUPONENTS OF A SAWTQOTH WAVE.
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1

.. COMPONENT,

4.1 4 dirasct currsnt component is present in a wave when more electrical energy is
tpanaferrad in one direction than in the opposite directicn. This means that the
average of the algebraic sum of the instantanecus values of the wave is not zero.

For some applications, the D.C. component of a waveform conveys important information.
Cne particular case is for the corrsct reproduction of a television picture. The D.C.
component of video signale is considered in Sectlon 4 of the paper "Composite Video
Signals",

The sum of the instantaneous values of a wave gives a result that is proporiional to
the area enclosed by the wave and the zerc axis. With an A.C. signal, the average of
the instantaneous values is zero. This is shown for sine, square, and sawiooth waves
in Fias- 1%a, b and ¢, where the area shove zerc equals the area below zero.

In Figs. 154, & and f, the same waveforms have = D.C. component added and this is
verified by examination of the areas of the positive and negative sections of each
wave. Fig. 154 has a positive D.C. component to the extent that never at any time

is the wave negative, Fig. 19¢ hasg a resultant positive D.C. component, and Fig. 15€
has a resultant negative D.C. component.

+

AMPLITUDE

AMPLITUDE

(a) {e)
FIG. 15. WAVEFORMS WITH AND WITHOUT D.C. COMPONENT.

4.2 Magnitude of D.C. Component. The average of the instantaneous values of s wave is
actually the magnitude of the D.C. corponent of the wave. Consider a positive
rectangular pulse train with an amplitude of 10 Volts as in Fig. 16a. The wave has no
negative section and the zrea of the positive section is 10 X 14. This is the only
section of the wave that has any megnitude for one complete cycle or a time of 8%,
therefore dividing the area hy 8% gives the average amplitude over z cycle. As the

cycles are repetitive this is also the average for the compleie wave.

.". The average amplitude = =—=wme

= 1,25 VYoits = The D.C. Component Amplitude.

To prove that this is the average value of the wave, consider the areas of the wave
a2bove and below the % volt average line as in Fig. 16b.

1

The ares above the average = 8.75 X 1t
= B.I5t
The area below the average = 1.25 X 7t
= 8.15t = area above average.

The signal then can bhe divided into a D.C. component of 1.25V and & rectangular A.C.
component with peaks of amplitude at -1.25V and +8.75V (Figs. 16c and 4).
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FIG. 16. WAVEFQRM DIVIDED INTC COMPONENTS.

4 general formula for calculating the D.C. component or average value of a gignal is ~

Average Amplitude

This formula is used in the followi examples and applies independ
P ¢ I

resultant component is positive or negative.

negative, the complete area is calculated by considering secstions of

kave convenient shapes.

< QNE CYCLE —— =

—— 125 5248 ;
+10 b -
@
pee
e
&
3
wd
=
-
[
S 04—
-9
Z
=3 §
.,4_..__.i
——!ﬁ-!

Positive Arsa - Hegative Areas

Total Time

t of whether the

I3a)
- /oy . : .
In example (2) where the signal is always

o~

the total area that

e GNE CYCLE —=

0 & —
@
-
wead
g -0
a
e NN
= -20-
E =) , gsu£§§\\x
a- Z 7 !
zZ
30 S F ‘
et S0 AL § e — 50 1 G
(v)

FIG. 17. WAVEFORMS WITH D.C. COMPONERT.

Example 1. What is the value of D.C.
component for the signal in Fig. 17a?

Positive Area of one cycle = 10 X 5Z units

= 520 units.

Negative Area of ons cycle = 4 A 5 uniis
= 20 units.

Average Yoltage (D.C. Component] - 5

1
L]
<y

Component of Fig.

Bxample 2. Calculate the average value
of the waveform in Fig. 17b.

Positive Area = 0
liegative Area = Area ABCD + Arsa DEF
P 10 X 50
= {20 3 100} + (5= Junits

= 72000 + 250 = 2250 units.

Positive Area - Negative Area

iverage Voltage -

Total Time




main use for this Information 1s 1lr considering the bandwldth required
ulses. Examination of pulse circuits by considering the frequency

i difficult and usually ends up
useful as a simple explanatlon.

with Time. In Section 3, the fregueucy ccxponents of pulses were
.

28 3 ma*hematl al ureatment Whluh,] not

lse techniques generally rely on the time for charge and discharge of capacitors and
inductors associated with resistors. The majority of pulse circuits, then, are more

ezsily explained by considering each pulse as a change in the D.C. voltage applied to
the cir cult, and by considering the charge or dissharge that occurs because of the
voltage change The voltage or current in the circuit is therefore considered on a
time scale.
In this paper, and in obther papers where a distinction is required, capital letters
are used ag symbols 3o designate fixed values such as the supply voltage (B5). Lower
cage letters are used as symbols for quantities that are varying with time; for

c

O)

zample, the instantaneous voltage across @ capacitor is designated eg.

a1

H

\n
V]
Q
[

ge of Capacitor. When a source of e.m.f. is comnescted to & circult consisting of
resistor and an uncharged capacitor in series (Fig. 16a), the capacitor does not
harge instantly to the supply voltage tﬂa) At the instant of conrection, the voliage
across the capacitor 1s zero as it has no charge, and the voltage across the resistor
is equal to the supply voltage. The current through a resistor is always equal to the
P.D. across it, divided by its resistance, therefore the initial current in the circuit
is equal to %?- As currsnt flows, a charge is built up in the capacitor, the quantity

o

Q

of charge (Q) being dependent on the current and the time (¢ = I%).

5.3 Bxponential Charge Curveg. In the circuit considered, the charging current cannot
continue at its initial rate. As the current charges +the capacitor, a voltage is
developed across the capacitor, and the voltage across the resistor decreases to the
same extent. The resistor veltage at any instant \eR) ig the difference between the
supply voltage and the capacitor voltage at that instant \ec), (eR = Eq - ec) The
oharglng gurrent therefore also decreases and the charging current at any instant is
is= E§_§__Q_ The decrease in the charging current causes a slower rate of increase

of voltage on the capacitor.

The change of the values of current and voltage in the circuit is shown in Fig. 18b.

These curves have a shape that ig described as exponential. The current (i) is at its
L3 L ) . S s

maximum value (Im) and equal to ?f‘at the instant the circuit is completed, and as the

capacitor charges, the current gradually decays towards zero. The voltage across the

resistor is proportional to current and is ecual to the supply veltage when the

circuit is first completed, and then decays towards zero. The voltage across the

capacitor is initially low and rises exponentially to approach the supply voltage.

The charge current in Fig. 18a is anticlockwise in the circult, and the voltages across
the capacitor and resisfor have the polarities as shown.

-

5.4 Time Constant. Independent of the values of the circult components, the curves of
voltage and current against time have the same shape. However, the actual charging
time depends on the values of the components, and the scales must be arranged to suit
the component values and the supply voltage. When the resistance is increased, the
maximum current is red: , and since @ = It, a longer time is required to achieve
the same charge ¢ = CE, increasing the value of capacitance increases the

@ for a given s¢9p1y voltage, and therefore also increages the charging time (for any
given value of series resistance).

The produot of capacitance snd resistance (CR) is known as the time constant of the
circuit komeol ~ T — Tau).

7 = time constant in seconds
In a resistor-capacitor circuit - 7 =CR whare C = capacitance in farads

R = resistance in ohnms.
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time equal to the
ied voltage change,
of their respective

An important feature of the exponential curves in Fig. 18 is that after a
circuit time constant, eg has increased to approximately 63. 2% of the appl
and ep and 1 kave decreased by approximately 63.2% to approximately 36.8%
maximum possible changes.

This leads to a practical definition of time constants—

The fime constant of & resistor—capacitor \R b> circuit is the time for the cavacitor
1tage to change by £3.2% of the applied voltage change.

In thecry, a capacitor never becomes fully charged, since for equal time intervals the
veltage always changes by the same percentage of the remaining voltage which determines
the current in the circuit, that is the voltage across the resistor. As an example, 1
100 volts is applied to a resistor-capacitor circuit, after a time equal Yo one itime constant
= 63.2V and ep = 36.8V.

k"_)

i & e o
Af‘ev a further time again egqual to one |
time constant, the capacitor voltage has
increased by a further 63.2% of the i |
remaining 36.8 veclts that is determining N A
the charging current, i.e. 23,26V, and - LR ;
is approximately 86.46V. :
Tt
After five time constants, hcwever, the 0 : t
capacitor volu:ge change ezﬂeed 99% of | i
the applied voltage change and is Eg-d-—- ~ o o P & i
>ongidered for practical purposes as \\ i
being completely charged. Values for A E
other charge times are considered in es \\\ ;
Sections 7 and 8. ==
® g, ,
C = I
A O
T ¢ —
s S o
T ®
L)%
L - ‘ i
© TIME a7 ST
e CIRCUIT
QPLETED - e -
TIME (TIME CONSTANTS) —efimo
s .\ PN
(a) (o)
FIG. 8. CHARGE OF A CAPACITOR THROUGH A RESISTOR.
As a matter of interest, if the initid current cou uld vvuiinuv; tnp capacitor voliage would
continue to increase at Its ini voltage in a time
equal o the cirocuilt time constantd. san be proved as Iollowssi-




the circuit of Fig. 18a is

or. Consider that the capacit
e supply voltage (Bg) and that urce of e.m.f. is removed and
circuit as in Fig. 19a. The capacitor voltage is directly across
or and causes a current in the circult in a slockwise direction. This is in
site direction to the initial charging current, and therefore the voltage

the resistor is also opposite in polarity to the voltage during charging.

e
2y
(9]
w o
£
Loy
o 0 R gg ey
2
o
2 150 O f
o
et
3
[
@
e ()
o O of

The magnitude of current in the circuit at the instaent of application of the short is
Eg
equal to -, which is the same as the instantaneous peak of current when the charging

<

oltage was first applied. As current flows the capacitor discharges and the voltage
across the capacifor, and therefore alsc across the resistor, reduces. This reduces
the value of discbarge current,; which reduces the rate of fall of the capacitor voltage.

0

Both the voltage and current in the
ceircult decay exponentially towards

zero as shown by the curves in

Fig. 19b. As before, after one time
constant the values have changed by {
63.2% to 36.8% of their respective =
maximum values.

~0+368 Xpg -~ -

After five time constants the
capacitor is, for practical purposes, ] !
fully discharged and the discharge ;
current is zero. Energy is stored
in the capacitor when it is charged, ~0-368 Eg 4~ -
and during discharge this energy is
dissipated in the resistor. =R

L If@ TIME

CIACUIT ie (T ISTANTS
COMPLETED / TIME (TiME CONSTANTS) ——Smse

(a) (v)
FIG. 19, DISCHARGE OF A CAPACITOR THROUGH A RESISTOR.

|
i\ 21 3T 4T 57

5.6 Regidual Chargs. So far we have considered the charge of a capacitor from zerc to a

mazimum value, and then the discharge back to zero. In many practical applications,
neither of the two extremes of volitage on the capacitor are zero.

Congider that the ewitch in Fig. 202 is closed for a short period, and then opened
and closed again. When the circult is first completed the capacitor commences to
charge. A% the cpening of the switch no discharge circuit is provided and the
capacitor voltage is maintzin On the closing of the switch again, the capacitor
charge is again increased, and follows exactly the same values that it would have, if
the circuit had not been broken {(Fig. 20b). The only difference is the displacement
in time of the section of the curve by an amount equal to the time of the break.

The rate of increase of charge is dependent on the voltage acting in the circuit at
any time, and this is 2 characteristic of the exponential shape; no matter where the
charge recommences on the curve, the remaining section always has the sams shaps.
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v (oPENED )
R (cLosen) @
O ﬁ E |

H Es 'gé
L] e — —

T IME ————n

(2) (b)

FIG. 20. INTERRUPTION OF CAPACITOR CHARGE.

This applies even when the change of voltage on the capacitor undergoes a change of polarity.
In Fig. 27a, the capacitor is initially charged to 60 volts. When the switch is closed
current flows %o discharge the capacitor, and then charge it to 700 volts in the opposite
direction. The complete discharge-charge curve is part of one exponential curve and there is
no disjointed appearance as the curve passes through the point of zero voltage (no charge) on
the capacitor.

At the instant the circuit is completed, the current is determined by the algebraic sum of
the sources of e.m.f. present in the circuit. In this case it is 160 volts, as the two
voltages present are aiding.

The change of current and voltages in the circuit is shown in Fig. 21b. If the capacitor's
initial voltage before the switch is closed (=60 volts) is taken to be the reference voltage,
then when the circuit is closed the capacitor charges from this reference to the maximum

160 volts more positive, and the curve is the same shape as in Fig. 18, for the simple
example with no initial charge. Iyd——--1 77__‘\,__,'\_\4 4-==r—=A

The current and the resistor voltage changes are : IM;E& f
also similar to the simple example, with maximum : | R
amplitudes as if there was no initial charge on

the capacitor, and the battery voltage was 160
volts.

In calculations relating to charge and discharge,
the change of voltage that is possible in the
circuit, that is, the resultant voltage causing
the charging current at the time of reference,

ig more important than the supply voltage of

the circuit.

—Z 10 | °

c @c =60V, +100-~———~-—- SR P

100V —— ‘ /

T R
K__L_) ] _/“"L"

0 (77 27 3T 4T ST
TIME (TIME CONSTANTS) ——Sme=
{a) (B)

FIG. 21. RESIDUAL CHARGE OKF CAPACITOR.
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INDUCTOR-EESISTOR CIRCUITS.

651 "Charge" of Inductor. When a source of e.mf. 1s comnected io & circult consisting of
an inductor and resistor in series as in Fig. 22a, the current does not rise instantly
to the maximum value. At the instant the circuit is completed there is no current,
and therefore the voltage across the resistor {(eg) is zero. The current attempts to
change and a self induced e.m.f. is developed across the inductor which opposes the
applied e.m.f., and limits the initial rate of change of current. To preserve the
law that the algebraic sum of the voltages in the circuit must be zero (Eg = ep + eR),
as ep 1s zero, the voltage across the inductor (eL) equals Eg. The rate of change of
current at this instant must then be such as to produce an induced voltage equal to
the applied voltage.

6.2 Exponential Charge Curves. The increase in current through the inductor cannot
continue at its initial rate in this circuit. When current commences, a voltage drop
is produced across the series resistor. This means that the voltage across the
inductance must decrease (eL = By - eR). The decrease in ey, is because of a reduced
rate of change of current, and this causes a reduced rate of rise of veoltage across
the resistor.

The curves of voltage and current with time are exponential and are shown in Fig. 22b.
The circuit current which is initially zero, increases exponentially towards a maximum
value. When it has reached its maximum value, there is no change of current, and

therefore no voltage across the inductor. The total supplyﬂvoltage is then across the

resistor and the maximum value of current (IM) is equal to 3?' The resistor

veltage (eR) is propertional to the current, and increases from zero to approach Eg.
The voltage across the inductor (eL) steps from zero to equal Eg when the circuit is
first completed, and then decays exponentially towards zero.

Notice that the curve for voltage across the resistor in an L-R circuit is the same
as the voltage across the capacitor of an R-C circuit, and the voltage across the
inductor in an L-R circuit varies in the same way as the voltage across the resistor
in an R~C circuit.

6.3 Time Constant. Again, as with the R-C case, the shapes of the curves of voltage and
current are independent of the component values, but the actual time for the current
in the circuit to rise is determined by the component values, so that suitable scales
must be included.

The induced e.m.f. developed across an inductor (eL), is dependent on the rate of
change of current and the inductance (L).

eg = rate of changs of current X L

di,

ci_tLL

(This is the basis of the definition of the henry, the unit of inductance. An induced

voltage of one volt is produced by current changing at the rate of one amp per second
in a coil with an inductance of one henry.,

When the circuit is first completed, e; = Eg. Therefore, if the value of inductance
is increased, the initial rate of change of current must decrease to maintain ey = Eg
and it takes longer for the current to build up. When the resistance of the circuit
B
is increased, the maximum current possible in the circuit is decreased (Iy = 3?),
and for a given value of inductance and supply voltage, it takes a shorter time for
the current to approach its maximum value.
Cs . . L, . . \
The ratio of inductance tc resistance <§) is known as the time constant (7 ) for
inductor-resistor (L-R) circuits.
T = time constant in seconds
In an inducter-resistor circuit - T == Whers L = inductance in hearies

E§ R = resistance in ohms.



—

n Fig. 22b, after one time comstant, e has reduced
and ep and the current in the circuit (i)
maximums.

The practical definition of time
constant for L-R circuits then is -

The time constant of a circuif

containing inductance and l
resistance is the time for the

current in the circuit to change

by 63.2% of its maximum change. 0
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hy 63.2% to 36.8% of its maximum value,

have increased to 63.2% of their respective

e TR
INETIAL ® | ; |
RATE OF ! i
CHANGE _ _ / Es

r r IH =12

As with R-C circuits, the changes of
voltage and current in the circuit
are considered as being completed
after five time constants.

L 41

|

1 o }
'T ES -
—re

| ' R ex
L
} © ) TINE
e | CIRCUIT
COMPLETED
FoN
La)
FIG. 22.

v 27 37 47 5T

TIME (TIME CONSTANTS) —— %=

g

{v)

"CHARGE" OF AN INDUCTOR THROUGH A& RESISTOR.

For interest, if
maximim value in & time equal to the time constant.
follows:s~

T

it
dt

{nitial voltage across inductor =

initial rate of change of current =

Time {t} to reach the maximum value iy =

the initial rate of increase of current could continue, it would reach the

This relationship can be proved as

di

@t

Iy
rate of change of current
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6.4 "Digcharge" of Inductor. When a current is pagsing through an inductor, energy is
stored in the magnetic field produced. Consider that the source of e.m.f. is removed
and replaced by a short circuit without breaking the circuit (Fig. 23a). The
inductance opposes any change of current in the circuit and if no losses were present
the current would continue. With resistance in the circuit, emergy stored in the
magnetic field is dissipated in the resistance, and the magnetic field and current
producing it gradually fzll to zero.

At the instant the discharge circuit is completed, the current is still Iy, so that
the voltage across the resistor is still equal to Eg. This voltage is the induced
voltage produced by the current attempting o change in the inductor, but as the
inductor is now the source of e.m.f., the voltage is of opposite polarity to the
voltage during the build up of the magnetic field as shown in Fig. 23a, and therefore
ey, = =Bg. To produce a voltage zcross the inductor with the required polarity and
magnitude, the current in the circuit must be decreasing at the same rate as it
increased during charging, that is, if the initial rate of change is continued the
current will be zero in one time constant.

However, the initial rate of change cannot centinue, for when the current decreases
there is less voltage drop across the resistor, and therefore less induced voltage
across the inductor. This reduction of inductor voltage is caused by a reduced rate
of change of current. Fig. 23b shows the discharge curves, which are again
exponential, decreasing from their maximum values to 36.8% in one +ime constant, and
reaching a practical zero in five time constants.

(When an inductive circuit is opened, and not first shorted, the series resistance in
the circuit becomes infinite, and therefore the time constant (%Q of the circult during

the collapse of the magnetic field, is zero. That is, the initial rate of change is
infinite and so the induced e.m.f. is infinite. In practice, the voltage increases
instantly to the extent that it is able to arc across the opening contacts and the
energy stored in the circuit is dissipated in the arc and the circuit resistance. )

6.5 Initial Current. We have considered the Tn -
change of current in an inductance from
zero to a maximum and back to zero.

In the inductive circuit there may be ; h\
some initial current and any variation P 4”\_

of this current through a resistance 0368 In \\\\\\
follows the exponential shape in the \ e
same way as examined for voltage in & o
capacitive circuit. In these cases we

are inferested in the change of current Es
rather than the actual value of current.

——— e e

&n
0368 Eg——————~
5 N
\
L e, 0
@ 0
g ——— /‘
/
® ~0-368 Eg -
. R e e
0 hd 3
©
* -E¢ | o AP R P SO
o i7 27 37 47 5T

TiME
[ ¢ircwiT \ TIME (TIME CONSTANTS) —Zmmow
(a) COMPLETED (b)

FIG. 23. DISCHARGE OF AN INbUCTOR THROUGH A RESISTOR.
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7. UNIVERSAL TIME CONSTANT CHART.

7.1 An observation of the curves for charge and discharge of capacitors and inductors

FRACTION OF MAXIMUM VOLTAGE OR CURRENT

shows that all changes of current and voltage in the circuits have an exponential
shape, and follow two basic curves -

(1) The magnitude of voltage or current decreases from either a positive or a
negative maximum value, quickly at first, and then at an increasingly slower
rate as it approaches zero or the reference value.

(i1) The magnitude of voltage or current increases quickly at first and then at an
inereasingly slower rate as it approaches a maximum value which is either
positive or negative.

A universal time comstant chart is drawn in Fig. 24, which includes the two curves
rsquired. The horizontal scale of time is related to the time constant of the
cirouit, and calculations are made by relating actual time to the circuit time

constant ag calculated from the formulae 7 = CR or 7 = %. The vertical scale is

calibrated so that at any time the voltage or current is indicated as a fraction of
the maximum voltage or current. The actual value of voltage or current at the
instant required is then found by multiplying the maximum value by the factor
determined from the correct curve on the graph, for the time required. With the
chart, calculations with accuracies to two significant figures are possible, and
examples are worked in paras. 7.2 and 7.3 to indicate how the chart is used.

When considering charge and discharge, we found that the sum of the voltage drops
scross the components at any instant is equal to the applied voltage. Here algo the
cum of the instantaneous values of curve "AY and curve "B equals the maximum value
of unity.

FO3— : T T T T T T T T T T T I
: i .

L

T

H
—

A \ : . !
\ [ ! ; L I T : |
v * i — ; : *

|4

O

~f

L]
e8]

O

o : ] — — =
@] o5 | 2 3 4
TIME (TIME CONSTANTS = CR OR %)

FIG. 24, UNIVERSAL TIME CONSTANT CHART.

tr
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ways of solving provlems assoclated with R-C
time constant chart.

U 3 I

7.2 The following examples set out typical
and L-R circuilis, and make use of the universal

Example 3. In the circuit of Fig. 25a, find the value of voltage across the resistor
after the switch has been closed for 250pS.

P +80-4---~
]
oS ]
SW 1
c
001 uF ea (V)
8ov T  Es R eq =
- 10KA
E=? - —-
¢ 1
b 0 250

o

T IME () — 3w

(b)

(a)
FIG. 25. R—C CIRCUIT FOR EXANPLE 3.

Az

When the circuit is completed the resistor voltage immediately

(1) Estimate the shape of the required curve.
This shape corresponds to

steps to 80V and then decreases exponentially towards zero as in Fig. 25b.
curve A of the universal time constant chart.

(i1) Calculate the time constant of the circuit -

7 = (R
7 = 0.01 X107 x 10* x 10 ms
= 100us.
{191) Express 2505 as a time (x) relative to the circuit time constant -
L
T
= %gg = 2.5 time constants.

(iv) Read off the factor on the vertical scale correspanding to 2.5 time constants and curve A,
i.e. approximately 0.08.

(v} Calculate the voltage -
ep = 0.08 X 80 = 6.4V
Voltage across resistor after 250uS = 0.4V,

Answer:-
Bxample 4. A capacitor is charged so that the output voltage is —160V with respect
to earth as in Fig. 26a. When the switch is closed the output voltage reaches —40
volts in 7.2uS. What is the value of the resistance in the circuit?

Ao AAAA——y o 240
SW R=7? )
el c 1® |
240V 3 0002, F e 160V €clV) g;c(v)o
® -40----+4-
g~ 7-2uS
b $—O -160
= T § ME mmm -
(®)

(a)

FIG. 26. R-~C CIRCUIT FOR EXAMPLE 4.

\Te <L
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The capacitor charge is changing frem a reference voltage of -160 volts to +240 volts as in Fig. 26b. At the instant
the circuit is complefed, the e.m.f. acting in the circuit, and therefore the maximum change of voltage possible is -

Ey = 160 + 240 - 40OV,
The change from the reference to -40V = +120V.

This change expressed as a fraction of the maximum change = %%% = 0,3,
From curve B of the universal time canstant chart, the change takes place in a time of approximately 0.36 time constants.

7.2u8 = 0.36 time constants

[

2 -
The circuit time constant = i3 20pS.
. T
ot
L X0
108 x 0,002
= 10,000Q
Answer:~ Circuit resistance = 10,000Q.

Exanple 5. A relay with 2 resistance of 1000Q znd an inductance of 5 henries will cperate

when 20mA of current flows through the coil. How long will it take for the current to
increase to the operate value after the relay is connected to a 50 volt supply?

4~<f"’047
SW
—tns
-
150V, L=5H{ 1000 I
-
20mA!

TIME o

FIG. 27. L-R CIRCUIT FOR EXAMPLE 5.

The current rises exponentially to a maximum with a shape as in Fig. Z7b.

3
h"q = —R—
B 1
103
. R . 20
Fraction of |y required to cause cperation = i 0.4,
From curve B of the universal time constant chart -
Time to reach 0.4 of Max. = 6.57 time constant.
7. L
R
t oy 103
- 3—5—19~ = S,
10°
Tine far current to reach 20mk = 0,51 X 5 = Z2.55rS

Arsweri- Tire for currett 17 reach operats valus - 2.53sS.
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7.3 The following example illustrates a more involved calculation of a %ype likely %o be
encountered in practice.

Example 6. The switch in Fig. 28 is moved to position 2 for 10mS and then returnsd
to position 1 for 10mS. The switching cycle is then continued at this regular rate.
The time for each change—over is negligible.

+ 10— —

Calculate the voltages present
immediately before and after each Cin (v)
switch operation, and draw graphs for
the first two switching cycles (40mS)

fo) I _

showing - T - T o ” A—_l
O = ey ey
(i) Ir(lput voltage to the network FIRST TIME ‘J.Eé** F e e E
e against time, and SWITCH e br] = >
) in) 88 ’ OPERATED a © 2
(1i) Output voltage from the (a)

network (egyt) against time.

10
Indicate the calculated voltages on +109 -
the graphs. 2out (v)
e o ’
o _
<
T swW C -s_]
- @ 02 uF T 544
[ 1A ein R MO Cout . ¥ ¥ - .
= l o] 10 20 30 40
TIME {m§)——3pm-
1 0O
- (b)
FIG. 28. CIRCUIT FOR EXAMPLE 6. FIG. 29. ANSWER TQ EXAMPLE 6.

(1) When the switch is in position 1, ey is zero and in position 2, ejn is 10V. After the first ocperation 10mS
s spent in each position and the graph of e, is as in Fig. 2%a.

{(11) The time constant for both charge and discharge is 20mS {7 = CR). When the switch is in position 2, the
capacitor charges for 10mS and when in position 1, the capacitor discharges for 10mS. Therefore, the
charging time and the discharging time per cycle is each 0.5 time constants. Therefore in each 10aS,
from curve A of the universal time constant chart, equt falls to approximately 0.8 of the voltage present
at the start of this time.

§hen switch is first operated to position 2, Switch changes to position 2 again.
there is no charge and therefore no voltage across
the capacitor. The algebraic sum of the e.n.f's. in the circuit
eout = 10V, = 10- 24
Kfter 103, cout = 0.6X10 - +1.6V.
- 4BV, © Cput
After 30n8, eout = 0.6 X 7.6

ec = 4Y. [Polarity as in

Fig. 28) = 4,56V,
Switch changes back to position 1. g " .4k
Switch changes to position 1 again.

fout = &C A
= kY, After 40nS, eout = 0.0 % -B.bk
After 20mS, egyt = 0.6 X -4 = -3.264V,

The output voltage (egyt) is as in Fig, 28b and is
shown on a common time scale with ey,

u
'
~o
s
:<
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. EXPONENTIAL FUNCTIONS.

8.1 For more accurate calculations of the state of charge of a capacitor or inductor, the
factor derived from the universal time constant chart can be obtained from tables of
exponential functions. Even when the additional accuracy is not required, it is
often more convenient to read a value from tables, than to estimate it from a graph
by projecting the point on the graph to the two scales.

8.2 Bxponential Formulae. The description of the charge and discharge curves as
"exponential" suggests that their shapes are dependent on the exponent of a number,
that i1s the index or the power to which a number is taken. The formulae describing
the shape of the curves of the universal time constant chart are related to powers
of the base of Napierian or natural logarithms (€).

Curve & in Pig. 24 ie obtained by plotting the results obtained by substituting values
for x in the formula.

y o= oex
that is Y4 - 1
E Ex

In our application; y becomes the fraction of the maximum amplitude or the vertical
scale, and x is the time expressed in time constants or the horizontal scale of the
resulting curve.

When we substitute x = 15 the result gives the fraction of the maximum after one time

constant.
- 1
= ¢t oor -3
YA 61
1
€
The value of & = 2.71828.
S
YA 2.71828
= 0.3679.

This agrees with the value obtained from curve A after one time constant.
To find the value after two time constants we substitute x = 2.
. 22 1
P = € -=
yA or 62
1

2.718282

= 0,1353.
Checking this against Fig. 24 shows that the curves agree to the accuracy possible.

The sum of the instantaneous values of curves A and B in Fig. 24, is equal {to the
maxipum value of unity on the scale for the graph, so that the formula for curve B
is obtained by subtracting the formula for curve 4 from 1.
foe. yp = 1-€7*
B 1
or yB = 1 -g_;
.. when x = 2, from the previous example -

~

€f = 0.1353
Jooyg = 1-0.1353 = 0.8647.

This again agrees with the universal time constant chart.
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8.3 Table of Exponential Functions. When making calculations it is likely that the time of
interest has no simple relationship to the +ime constant. It may be, for example, a
time equal to 2.4 time constants. This makes the value of g 24 narder 4o calculate,
For convenience, tables are available which normally include values for €% and €™% for
various values of x to approximately 6. Some tables of exponential functions include
in addition to the above, a column with values of 1 — ™%, This makes it more
convenient to find the values on curves that are increasing exponentially towards s
maximuim value.

An example of a section of a table is shown in Table 2. To find the multiplying
factor to determine a value after 2.4 time constants from the initiation of the change
for an exponential curve which is approaching zero, we locate x = 2.4 and read off
e X = 0,0907.

To find the time for a curve to increase exponentially from zero to, for exampls, 20%
of the maximum value, we lock for 0.2 in the 1 - €% column. This gives a value for
x between 0.22 and 0.23 that is approximately 0.223. Therefore it takes 0,223 time
constants for the exponential curve to reach 20% of the maximum value.

X =X =X X =X

=X X =X X - -
x| € € 1-€ X e le 1-€ € @ 1-€ x € e | 1-¢*

33.115| .0302 | .9698
34,813} .0287 | .9713

.00 }1.0000 11.0000 { .0000 ¥ .50 | 1.6487 .6065 | .3935 2.7183.3679 | .6321
4 1.6653| .6005 | .3995 2.8577] .3489 | .6501

X
1.00 3.50
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TABLE 2. EXPONENTIAL FUNCTIONS.

8.4 Exponential Formulae for Charge and Discharge. By combining all of the processes used
in the calculations in paras. 7.2 and 7.3, general formulae can be derived for the
voltages and currents in R-C and L-R circuits.

For example, to find a formula for the variation of voltage across the capacitor of an
R-C circuit after the applied voltage to the circuit has been altered, consider that
the applied voltage is initially Ep and the capacitor is fully charged to this voltage.
The input voltage is then changed to Eg so that the capacitor voltage changes
exponentially towards Eg as in Fig. 30. The maximum change of voltage (AB) is Eg - Ejp.
Thinking of the initial voltage (Ep) as the reference voltage, after the change of the
input voltage, the capacitor voltage (ec) increases towards a maximum value, and the
change as a fraction of the maximum at any point on the curve is described by the
equation -

yp = 1 - gX
As AE is the maximum change, the actual voltage change is ~
eg (change) = AE (1 - €7X)
Adding this to the reference voltage, the actual capacitor voltage at any instant is -
eg = Ep+ [AE (1 - €~x)]

x is the time (t) in time constants —

\.‘l/—}-

for R-C circuits.

ol
ESias
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. E
This formula applies independent of whether Ej or Ep are B T
positive or negative, or the change of voltage is positive } :
or negative. 8 \\

< |AE e

Other formulae can be derived in a similar manner, and i
these are given in Table 3. However, in most cases it is 9
more convenient to reason out the shape of the resultant
curves, and then use the relevant section of the E,
exponential tables to determine the relationship between 5 ' ? ? 4'1 !

time constant and fraction of the maximum value, than to
attempt to memorise the formulae of the table. TIME (1) —

FIG. 30. CAPACITOR VOLTACE.

]

R-C CIRCUITS L-R CIRCUITS ;
0 < pEEX &) - B [aE (1 -]
eg = B+ [AE (1- €"‘)j| e = AEETX
. A . I :
fhe) = F € HR) = | I:—R— (1-¢ x):[
Eq = Initial Voltage x - o for R-C circuits
WHERE fg = Final Voltage QR

- R oo LR circuit
AE = Waximum Voltage Change (E3 - £p) X Cer circutts

TABLE 3, EXPONENTIAL FORMULAE FOR R-C- AND L-R CIRCUITS.

Example 7. (Using exponeritial formila.) The capacitor in Fig. 31a has been completely
charged with the switch in position 1. The switch is then operated to position 2.
What is the capacitor voltage 60mS after the switch operation?

The capacitor is charged to -40 volts [EA). When the switch is in (D
nosttion 2 the voliage attempts to change towards +60 volis (EB) as shown W PN
in Fig. 31b. The formula for the capacitor voltage is - (z)j_
e = Ex+ [OE (1-¢7%)) Taov _Teov. ZMT
AE - Bg - By T T
=
= B0 - {-4D) = 100V. -
t (a)
X for 60nS = TR $60d~— e
60 X 106 ? et
N L L. — - 0T I
103 X 2 X 4 X 10% E_dl)o
. Voltage after 60mS = -40+ BOO {1- 6-0'75£| /
Y T A N
a2 - F 71 T v 70
40+ [100 X .5276 ] J R RN
= 40+ 52.76 TiME (mS) — 2
= 412,78 Yolts (b)

dnswer:~ Capacitor VYoltage after 60mS = +12.76 Volis, FIG. 31. CIRCUIT FOR EXAMPLE.
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9. CEARGING FRCM A NETVWORK.

91 In many practical circuits the charge znd discharge of capacitors and inductors is
from a network of components, valves and voltage sources. It is often required that
the change of charge of a capacitor in the anode circult of a valve as in Fig. 32a
be examined when the grid voltage changes abruptly from one value toc another. Thig
type of circuilt can be considered as being equivalent to a simple voltage divider
consisting of the load resistance and the D.C. resistance of the valve for the circuit
voltages applying (Fig. 32b). Even s0, it is not obvious how the charge of the
capacitor will vary or what will be the time constant of the circuit.

4 OHT + ey
>
Ry ?RL
2 + 2
T 4T I_ sy T
T i el s
OUTPUT S ¢ T OUTP!UT
R{? RZ é
—OHT- -0

5”.«

(a) (»)

PIG. 32. CAPACITOR CHARGING FROM A NETWORK.

9.2 Thevenin's Theorem. The shape and the timing of the charge curve for the capacitor in
Fig. 32, and of capacitors and inductors in other and perhaps more complicated circuits,
is easily examined by using Thevenin's Thecrem. One way of stating Thevenin's Theorem
is -

The current in any impedance connected fo a two terminal network of any pumber of
impedances and voltage sources, is the same as when the impedance is connected wc a
single voltage source equal to the open circuit voltage at the two terminals, and
with an internal impedance equal to the impedance measured at the terminals with the
voltage source replaced by impedances equal to their respective internal impedances.

This statement is explained in Fig. 33. The network in Fig. 332 supplies current to
impedance Zy,. With 2, disconnected the voltage betwesen A and B is Bo (Fig. 33b) and
the impedance looking into A and B with any voltage sources in the network replaced
by their equivalent impedances, is Zg (Fig. 33c). The equivalent circuit for the
network is then as in Fig. 33d, with a voltage, E), being applied to terminals 4 and
B via an impedance, Zj.

A A
___-Q«———i
NETWORK Z NETWORK <o
B 3 |
’S)

(a)

A

NE TWORK ——-—-o«-e——|
(voLTaces 7o
REPLACED BY
IMPEDANCES ) 2|

(c) (a)

FIG. 33, THEVENIN'S THEOREM.




INTRODUCTION TO PULSE TECHNIQUES.
PAGE 29.

@.3 A simple problem solved by twe methods proves the validity of the theorem and indicates
how it is used.

Example 8. In the circuit of Fig. 34, what is the current through R3.

;:gzdssojL
- A

24-5V.

1f-

Ry <5000 Rz < 20000
1 >
L |8

FIG. 34. CIRCUIT FOR EXAMPLE 8.

) n
Solution (i). ParalTel reststance of Rp and Ry - Ss-i-2000 + 4000

Total Resistance = 4,800Q

Tot Curp E mmilelaoio = A,
Total Current 1906 SmA
Voltags across Ry and Ry in parallel = 5—$a%99 = .
. . 2 4108
Cur en i = v ryras = °
Current through Rz 5750 TmA
Answer:~ Current throuah Ry = Inh.
§Elﬂiiﬂﬁn£iil' (Thevenin's Theoren. |
fn Fig. 3%, with Ry disconnected, the voltage betwesn A and B
500 x 785 _ .,
- —"""g'(':‘-qn—“‘" - 2a VSV .

Resistance between A and B with 24.5V battery replaced by a short circuit

4500 X 500
G0+ 50 to0e
The equivalent circuit is shosn in Fig. 35.
450 1L A
-
o 45V. R3§2000ﬂ
‘Iy 8
FIG. 35. EQUIVALENT CIRCUIT FOR EXAMPLE 8.
? 3
From Fig. 35, current through R3 = :l&gﬂéﬁlg" = 1mA,

Answer:- Current through R3 = 1ImA.
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9.4 Charging Capacitor from a Complex Source. The method of calculation using Thevenin's
Theorem 1is applied to the charging of & capacitor in the following problem.

Example 9. (i) Find the voltage across the capacitor in Fig. 36&7 210mS after
the switch is closed.

(ii) Pind the initial charging current through the capacitor.

(1) Voltage across A and B with capacitor disconnected
{switch closed) -

1 L B0
————— X 20 - ;e - 2000,

Resistance of source with battery replaced by a short
eireuit -

(6.25 x 168) (1 x 100)
(0,25 x 108) + (1 x 108)

200Kk

Equivalent circuit is as in Fig. 36b.

Time constant of equivalent circuit -

0.6 X 0.2 x 108 x 103
108

120mS.

210mS expressed in time constants -

= %%% = 1.75 time constants.

From exponential functions {1 - € %), voltage on
capacitor after 1.75 time constants -

= (.8262 of maximum

= 0.8262 X 200 = 165.24V.

{(i1) The initial charging current from the squivalent T :
circuit -
B
3
x|
0.2 ¥ 108
(v)

Answer:- (i) Capacitor voltage after 210m$ = 165.24V.

(11} inttial charging current = TmA. FIG. 36. CIRCUIT FOR EXAMPLE 9,

Thie initial charging current can be verified by referring to Fig. 36a and considering
the voltages when the switech 1s first closed. With no charge on the capacitor, and
therefore no voltage across 1t, all of the supply voltage is across Ry. This means
that the initial current through Ry is -

With no voltage across Rp all of this current passes through € as a charging current.
This is the same current as calculated frcw the equivalent circuit.

Also when the capacitor is fully char

across the components is only determ

on the capacitor is therefore the <
R

2d, no capacitor current flows, and the voltage
L voltage divider. The maximum voltage
5 Rp with C effectively disconnected,

A

i.e. Bg. This is the same as th snum voltage on the capacitor in the

2
Ry + Ro
equivalent circuit, that is the scurce veliage of the equivalent circuit.
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- TEST QUESTIONS.

1. Draw a rectangular wave and indicate on the wave -
{1) Pulse Spacing.
{i1) Pulse Duration.
{111) Rise Tine.
2. Define "Pulse Duty Factor".

3. Draw approximately the frequency spectrum of a rectangular pulse train with a pulse repetition frequency of 15ke/s
and a pulse duration of 5uS. Show the frequency scale and the component frequency spacing.

&, What bandwidth is required to transmit a pulse with a rise time of 0.2pS with negligible degradation,

5, Calculate the peak-to-peak value of a negative rectangular pulse train with a pulse spacing of 50uS and a pulse duty
factor of 0,1. The average value of the wave is -5 volts and the maximum positive part of the wave is at -1 volt.

6. The video waveforms on the anode of a video amplifier are shown for a black picture signal in Fig. 37a and for a white
picture signal in Fig. 37b. What D.C. anode voltage would be indicated by a moving coil meter for each signal condition?

S O+HT
BLACK
SIGNAL —
—w‘hﬁps Aﬂ\ SALS
G+2204--—-~ - ]
- A
24200 ]L / IL
Z+i961--- /
& = =2 f ~—12 us
- i
2 ——— (4 S 648
= +HT
b s
G450 v
= /
WHITE
SIGNAL
(a) (b) ()

FIG. 37. WAVEFORMS AND CIRCUIT FOR QUESTICNS 6§ AND 7.

7. The video signals of Fig. 37 are A.C. coupled to the grid cathode circuit of a television picture tube as in Fig. 37c.
Cut-off of the picture tube occurs when the grid is 60V negative with respect to the cathode. The bias is adjusted
with each signal in turn so that black level of the signal is at the cut-off voltage. ¥hat is the bias voltage
required at point A for each signal?

8. {i) Uefine "time constant® of an R-C circuit,
{11) Dras the curves of voltage and current in an R-C circuit when the capacitor is charging from zero to a maximum
voltage (Em). Mark the magnitude of each of the curves relative to Ey. one time constant after charging has

commenced.

Q. The time constant of a series R-C circuit ts 20mS. A B0V supply is connected for 15nS, removed for S and then
connected again for a further 15mS. Calculate the capacitor voltage at the end of this time.

10. Two capacitors, one of TuF and one of 4uF, are connected in serfes to a 120 volt supply via 2 50kQ resistor.

{i) How Tong dees it take the voltage on the
{a) TuF capacitor, {b) &uF capaciter,

to reach 20 volts?

{13) %hat is the circult current at the instant the circuit is compl eted?
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i1, Fig. 38 is intended o introduce a time delay in relay cperation.
The switch rests in position T angd timing starts when the switch is
operated to position 2 where a bias voltage of -5 voits is connected
to the grid to prevent excess anode current.

The relay operates when the grid is -10 volts and releases when the grid
is <15 volts with respect to the cathode in each case.
(1) What value of capacitance is required to give a 4.6 minute delay?
{11) The switch remains in position 2 until the capacitor is fully
charged and then returns to position 1. How long is it before

the relay release voltage is reached?

(111) 1f the operate voltage required changes to -8 volts, what would be
the change in time delay introduced by the circuit?

12. The switch in Fig. 39 closes for 20mS and then opens again. What is the
capacitor voltage 60mS after the switch first closed?

13. An amplifier has a coupling circuit consisting of an 0.1uF capacitor and
an 0.58Q resistor.

(1) What is the time constant of the circuit?

{11) ¥hen the capacitor has a leakage resistance of 1.55Q, what is
the circuit time constant?

T4, & & henry inductor with an internal resistance of 400Qis connscted to a battery.

(1) that is the battery voltage?

—SSVQ
5K
14, s¥

n

:
:
[
1

~5y O

FI1G. 38. CIRCUIT FOR QUESTION 11,

SW

‘\lWH
3
S
|

DI
L 200y 160K £ o= G2 uF
P .

FiG. 79, CIRCUIT FOR QUESTION 12.

1

The current after 5aS i+ . mi,

(11) How long will it take for the current through the inductor to reach 20mA vhen: -

{a) A 4006 resistor is connected in series with the inductor?

{(b) A 400Q resistor is connected in paralle! with the inductor?

{(c) A 400Qresistor is connected in parallel with the inductor and another 4009 in series with the combination?

3

15, A 100 volt battery is connected to a 2uF capacitor via a 10kQ resisior, and the capacifor is completsly charged.

A 2.5kQ resistor is then connected across the capacitor.
{1) Draw graphs of the change of:-

voltage across the capacitor;

voltage across the 10kQ resistor;

)

)

) current in the capacitor;

) current in the T0kQ resistor;
)

current in the 2.5kQ resistor.

(11) Calculate and indicate on the graphs the initial, maximum and final values.

{111) How Tong does it take for the change o be, for practical purposes, completed?

END OF PAPER.



